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Sex differences influence brain morphology and physiology during
both development and aging. Here we apply a machine learning
algorithm to a multiparametric brain PET imaging dataset acquired
in a cohort of 20- to 82-year-old, cognitively normal adults (n = 205)
to define their metabolic brain age. We find that throughout the
adult life span the female brain has a persistently lower metabolic
brain age—relative to their chronological age—compared with the
male brain. The persistence of relatively younger metabolic brain
age in females throughout adulthood suggests that development
might in part influence sex differences in brain aging. Our results
also demonstrate that trajectories of natural brain aging vary sig-
nificantly among individuals and provide a method to measure this.
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machine learning

Human brain aging is characterized by varying trajectories.
Some individuals succumb to rapid cognitive decline, whereas

other individuals retain their cognitive abilities as they age beyond
the typical human life span. Accordingly, it is important to un-
derstand the factors that influence brain aging, particularly in the
context of an aging population. In humans, normal aging is asso-
ciated with a decline in brain metabolism (1–4). Our recent mul-
titracer PET brain imaging data demonstrate that as the brain
ages, its resting metabolism gradually shifts away from a mixture of
nonoxidative and oxidative use of glucose to predominantly oxi-
dative metabolism (4, 5). This occurs even in a cognitively normal,
amyloid-negative cohort, suggesting that neurodegeneration alone
is unlikely to explain this metabolic shift. However, the reasons for
this metabolic brain aging phenomenon are currently unknown.
One potential view of the normal metabolic changes in the

aging brain is that it reflects a gradual cessation of ongoing de-
velopmental and maturational processes. In comparison with
other primates, the human brain has a high degree of neoteny, i.e.,
a prolonged persistence/maintenance of developmental character-
istics, based on ex vivo transcriptomic, metabolic, and microstruc-
tural data, as well as in vivo metabolic brain imaging data (5–9).
Some regions of the brain show a heightened degree of transcrip-
tional and metabolic neoteny (5), and these same regions show the
most loss of nonoxidative glucose use, i.e., aerobic glycolysis, with
typical aging (4).
Thus, factors that influence brain development, such as sexual

differentiation, might also be critical in determining the trajectory
of brain aging. Sex differences influence structural aspects of brain
development in children and during early adulthood (10) and also
delay developmental changes in cerebral blood flow during early
adulthood (11), raising the possibility that the adult female brain
retains more youthful, i.e., neotenous, features compared with the
adult male brain. Transcriptomic data seem to support this view:
aging-related gene expression changes are regionally and geneti-
cally sexually dimorphic. Specifically, in females there is less aging-
related change in genes related to energy production and protein
synthesis (12), though increased aging-related gene expression
related to the immune system and reactive changes to environ-
mental stressors (13). In a more recent study, peak changes in a
brain transcriptome were found to occur later in females than in
males in both humans and mice (14).

Here we apply our multiparametric metabolic brain imaging
data to examine the influence of sex on brain aging in vivo. These
data derive from a cohort of 205, cognitively normal, individuals,
including 40 that were brain amyloid positive, across the adult life
span (4). We developed a machine learning algorithm on these
data to derive “metabolic brain age.” By comparing this metabolic
brain age to an individual’s actual age, the machine learning al-
gorithm can determine whether an individual’s brain appears
metabolically younger or older than it should. Hence, this provides
a single measure of accelerated or decelerated metabolic brain
aging based on multiparametric and multiregional metabolic data,
which thereby allows us to determine whether females differ from
males with respect to their aging brain.

Results
Participants and Data. Regional PET imaging data from a cohort
of 205, 20- to 82-y-old, cognitively normal adults participating in
six different studies at our institution were obtained and pro-
cessed, as described previously (4). These PET data include
measurements of regional total glucose use (CMRGlc), oxygen
consumption (CMRO2), and cerebral blood flow (CBF). In ad-
dition, we calculated regional aerobic glycolysis (AG)—the
fraction of glucose use presumably not accounted for by oxida-
tive metabolism—from these data, defined as the absolute molar
difference between age-normalized CMRGlc and CMRO2.
These data were further quantile normalized for each metabolic
parameter individually (here CBF is included as a “metabolic”
parameter to simplify our nomenclature), equalizing the mean
and statistical distribution of brain metabolism across 79 brain
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Prior work has identified many sex differences in the brain, in-
cluding during brain aging and in neurodegenerative diseases.
Notably, many of these studies are performed by comparing
age-matched females and males. Evolutionary theorists have
predicted that females might have more youthful brains (neo-
teny) as compared with males, but until now findings in support
of this theory have been limited to postmortem transcriptional
analysis, some of which is contradictory. To test this hypothesis
in vivo, we analyzed sex differences in a unique brain PET
dataset in over 200 normal human adults across the adult life
span. We find that in terms of brain metabolism, the adult
female brain is on average a few years younger than the
male brain.
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regions for each of 184 PET imaging sessions in 165 cognitively
normal, young or amyloid-negative individuals, including 19 re-
peat sessions. Thus, what differentiates the normalized brain
metabolism data in one individual from another is primarily the
rank order of brain regions for each metabolic parameter.

Calculation of Metabolic Brain Age. A supervised machine learning
algorithm, random forest regression with bias correction (15), was
applied to the quantile normalized brain metabolism data and
trained and tested against the actual chronological age of the
participants. Ten-fold cross-validation demonstrates that the pre-
dicted age based on this algorithm—defined as metabolic brain
age—closely matches the actual chronological age of the partici-
pants (Pearson’s r = 0.88–0.90 over 10 runs) (Fig. 1A); the dif-
ference between metabolic brain age and actual chronological age
varied across participants with a typical SD of 8.6 y, median ab-
solute deviation of ∼5.4 y, and ranging from −18 to +16 y. A
bootstrap analysis with randomly assorted actual ages confirmed
that this result was not due to spurious feature detection by the
random forest algorithm (for n = 100 null permutations, Pearson’s
r ranged from −0.26 to 0.25).
To assess the influence of each metabolic parameter (AG,

CMRGlc, CMRO2, or CBF) on the accuracy of the machine
learning algorithm, we recalculated metabolic brain age after
removing each of the metabolic parameters from the dataset.
This resulted in only minor changes in accuracy between meta-
bolic brain age and actual age (Pearson’s r = 0.87–0.90), with
removing AG causing the largest loss of accuracy (SI Appendix,
Fig. S1A). Further, the BorutaR package, which identifies fea-
tures that are important to maximize random forest accuracy,
found that at least 59 of 316 features involving all four metabolic
parameters are important for determining metabolic brain age
(SI Appendix, Fig. S2); thus we use all of the metabolic data when
subsequently calculating metabolic brain age.
To further validate metabolic brain age, we assessed the sta-

bility of this metric over time within individuals. The 184 PET
imaging sessions included repeat sessions 1–2 y later in 19 par-
ticipants (Fig. 1B). The mean difference in metabolic brain age
between the two sessions was 1.1 y (actual mean time difference
1.6 y). There was a high correlation between initial and sub-
sequent metabolic brain age after correcting for actual age (n =

19 pairs of PET scans, Pearson’s r = 0.80, P < 0.0002), suggesting
that metabolic brain age remains consistent within individuals
over a short period of time.

Sex Differences in Metabolic Brain Age. Self-reported participant sex
was gathered consistently in each of the six studies that comprise
the whole dataset; we acknowledge that genetically determined
sex was not available in this retrospectively collected data, but the
frequency of discrepancies between genetic versus reported sex is
likely to be too low to significantly influence our results.
Using both males and females to train the random forest al-

gorithm in calculating metabolic brain age would necessarily
obscure sex differences since the machine learning algorithm
would be inclined to account for these differences in maximizing
its accuracy. On the other hand, if female brains are truly more
neotenous than male brains, then they should look “younger”
when the algorithm is trained on males only. The random forest
regression with bias correction algorithm was thus trained first
on the male cohort only, and then “tested” on the female cohort.
For both the training (males) and test data (females), metabolic
brain age again correlated strongly with actual chronological age
(Pearson’s r > 0.88) (Fig. 2A). However, the mean metabolic
brain age (minus actual age) was on average 3.8 y less for females
compared with males (n = 108 females and 76 males, 95% CI
1.0–6.6 y, P < 0.010 t test, Cohen’s d > 0.40) (Fig. 2B, see also SI
Appendix, Fig. S3A). To confirm that the female–male difference
in metabolic brain age was not specific to training the data on
males, we also trained the algorithm with female data only and
found the predicted metabolic brain age for males to be 2.4 y
older compared with females (P < 0.038 t test, one-sided; in a
combined bootstrap analysis, the likelihood that female meta-
bolic brain age would be younger than male metabolic brain age
by 3.8 y in either of the two tests was P < 0.014). Despite these
sex differences in metabolic brain aging, random forest was,
surprisingly, relatively poor at distinguishing males from females
using the brain metabolism data (n = 184, gender predicted ac-
curately in 66% of instances).
It is possible that this sex difference in metabolic brain age could

be driven by a handful of brain regions and/or metabolic param-
eters. The procedure of calculating a difference between female
and male metabolic brain age was thus repeated on a random

Fig. 1. Machine learning predicts participant age from normalized metabolic brain PET data. (A) Random forest regression with bias correction was trained
on 184 quantile normalized metabolic brain PET data to predict participant age. Ten-fold validation was performed, and the dots represent the collated test
cases. The resulting predicted age—described as metabolic brain age—correlates highly with actual age (Pearson’s r = 0.89, bootstrap Z score >3.8, P <
0.0001). (B) Nineteen participants underwent repeat PET imaging 1–2 y after their initial PET. The difference between their metabolic brain age and actual
age, while variable among individuals, remained largely consistent within individuals between repeat tests (Pearson’s r = 0.80, P < 0.0002).

2 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1815917116 Goyal et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815917116


www.manaraa.com

selection of 60 of the 79 brain regions in 1,000 permutations; in all
cases females demonstrate a mean metabolic brain age (minus
actual age) that was younger than males (ranging 1.4–7.9 y younger
across all 1,000 permutations, mean 4.7 y younger, see SI Appendix,
Fig. S3B), demonstrating that this finding cannot be ascribed to a
small subgroup (<20) of brain regions. To determine how female
versus male differences in metabolic brain age depended on spe-
cific metabolic parameters, we recalculated the sex-based meta-
bolic brain age difference after removing each metabolic parameter
(AG, CMRGlc, CMRO2, or CBF) separately. Removing either
CMRGlc or AG decreased the sex-based age difference slightly
(2.7 and 3.3 y, respectively), but removing CBF increased the dif-
ference further (5.3 y), suggesting that female–male metabolic
brain age differences are more dependent on brain glucose use
than CBF or CMRO2 (SI Appendix, Fig. S1B).

Brain Amyloid and Metabolic Brain Age. One possible confounding
source of interindividual variability in metabolic brain age might be
brain amyloid deposition, which has been reported to trend slightly
more frequently in aging women compared with men above the age
of 70 y (16). After using the initial 184 PET dataset in cognitively
normal, young or amyloid-negative individuals to train the bias-
corrected random forest regression algorithm as per above, we
applied the trained algorithm to new PET imaging sessions
obtained in a separate cohort of cognitively normal participants
who were amyloid imaging positive (n = 40, ages 60–80, 10 un-
derwent two PET sessions). Compared with age-matched amyloid-
negative participants, asymptomatic amyloid-positive participants
did not have a significantly different metabolic brain age (mean
metabolic brain age: amyloid negative = 66.5 y, amyloid positive =
67.1 y; P = 0.27, two-tailed t test), suggesting that brain amyloid
status does not significantly account for interindividual variability
in metabolic brain age (Fig. 2C).

Discussion
Our results demonstrate that from an in vivo metabolic view,
throughout the adult life span the typical female brain is more

youthful, i.e., metabolically neotenous, than the male brain.
There is no indication in the data that this sex difference in
metabolic brain age varies between young and older adults,
though it should be noted that our study contains relatively fewer
data points in middle-aged individuals (35–50 y). Nonetheless,
our findings are consistent with other data showing in females
less loss of cerebral blood flow following puberty (11), more
brain glycolysis during young adulthood (17), less loss of protein
synthesis-related gene expression during aging (12), and a delay
in the peak transition point of brain gene expression (14). Our
results suggest that female brain neoteny is present in young
adults and persists throughout the adult life span, suggesting that
sex differences during brain development set the stage for sub-
sequent trajectories of brain aging.
The implication of increased metabolic neoteny in the female

brain with regards to neurodegenerative diseases warrants further
investigation. An intriguing hypothesis is that higher neoteny in the
female brain might provide some degree of resilience to aging-
related changes. This is supported by data from a previously
reported cohort that found evidence for less memory decline
and hippocampal atrophy in aging females compared with males
(16). Similarly, in the Baltimore Longitudinal Study of Aging,
noncognitively impaired women outperformed males on most
cognitive tests and on a few had less steeper decline than males
(18). Heightened glycolysis in the adult female brain might explain
some of this resilience, since brain aerobic glycolysis is involved in
learning and neurite growth (19, 20). However, it is likely that sex
influences on brain aging are multifactorial and complex since
evolution and natural selection effectively perform combinatorial
optimization of multiple biological processes simultaneously (21–
23). Further, sex differences in the development and progression of
pathological processes, such as amyloid or tau deposition, and in the
clinical recognition of cognitive impairment will likely further
complicate how sex influences the development of dementia (24).
The reasons for sex differences in brain metabolism are not yet

well elucidated. Hormones might be a specific mediating factor;
estrogens enhance synaptic plasticity in rodent models and

Fig. 2. Metabolic brain age is significantly lower in females. (A) To identify sex differences in metabolic brain age without allowing sex-related age im-
balances to bias the machine learning algorithm, random forest regression was first performed on males and then tested on females. Each dot represents a
different individual PET session and lines represent best fits. Note that as a group, females across the life span have a lower predicted versus actual age
compared with males. (B) Metabolic brain age for both groups correlated with their actual age, but the difference between the predicted and actual age was
lower for females compared with males (mean difference females versus males −3.8 y, n = 108 females and 76 males, 95% CI 1.0–6.6 y, P < 0.01 t test); the
boxplot hinges represent the mean and the 1st and 3rd quartiles of the data. (C) Metabolic brain age (“predicted age”) was assessed in 40 amyloid brain PET
imaging-positive individuals after training the random forest regression algorithm on the 184 PET sessions in young and/or amyloid-negative individuals. This
revealed no significant difference in metabolic brain age between the two groups. Subtle differences between metabolic brain age (predicted age) between
the figures in A and C are likely due to different cohorts being used to train the random forest algorithm.
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thereby may help to maintain more youthful brain metabolism
(25, 26). A prior study found significantly lower CMRGlc in sev-
eral brain regions in postmenopausal women compared with
premenopausal women (27). We did not have sufficient data in
this retrospective cohort to accurately assess menopausal status in
our study participants, although the sex differences in metabolic
brain age appear to persist beyond the age of 60, suggesting that
this finding is unlikely to be entirely due to menopausal status. On
the other hand, the effects of hormones on brain metabolism
might occur at a younger age, “setting” in females a younger
baseline metabolic brain age during or soon after puberty at the
start of adulthood. Indeed, cerebral blood flow patterns are less
affected by puberty in females compared with males (11), which
might allow females to begin adulthood with a more “youthful”
pattern of brain metabolism as seen here.
Additional sex differences may also be relevant. Intrinsic cellular,

metabolic, and immune system sexual dimorphism have been im-
plicated in various other organ systems (28, 29) as well as tumor
metabolism (30); similar factors might explain sex differences in brain
metabolism (31). Prolongation of metabolic youth in the female brain
also parallels increased female longevity in humans, though mecha-
nisms underlying the latter are similarly not well understood (32).
Note that this study cannot separate the effects of sex—a bi-

ologically determined characteristic—from gender, which in-
cludes societal influences. Societal effects on the environment
and lifestyle of females, including their decision to participate in
brain imaging studies, might have influenced our results due to
sex-specific cohort effects. As the effect size of sex on metabolic
brain age was relatively modest, our results require further
testing in an independent cohort to test for generalizability and
reproducibility. Also, investigations into how sex determines
brain metabolism and aging are needed, particularly to identify
sex-related mechanisms that might increase or decrease the risk
of pathologic or accelerated trajectories of brain aging.
The absence of significant metabolic brain age differences due

to brain amyloid deposition is intriguing. It is possible that am-
yloid deposition does not appreciably affect brain metabolism
until a certain threshold of neurodegeneration is met. Alterna-
tively, the cohort of cognitively normal brain amyloid-positive
participants in this study might be enriched with individuals who
are to some degree “metabolically resilient” to the effects of
amyloid deposition, thereby canceling out potential amyloid ef-
fects on metabolic brain age. Also, the relationship between
biomarkers of AD pathology and brain metabolism may be
complex. For example, in a subset of amyloid-positive individuals
with tau PET scans available, we found an association between
brain AG and higher tau deposition but not in amyloid-negative
individuals (33). Further prospective and longitudinal studies will
help to investigate these possibilities.
Our results demonstrate the value of applying machine learning

to assess factors that influence brain aging (34). Also, whereas prior
work on sex differences in the adult brain often compared age-
matched females to males, our current results argue that some of
these differences might simply arise from females having more
neotenous-appearing brains. Measures such as metabolic brain age
might be useful in predicting the risk of cognitive decline and in
identifying other factors that could potentially improve or worsen
the trajectory of human brain aging. Further investigations are now
needed to validate metabolic brain age in other cohorts, determine
its predictive potential, and answer why sex might affect it.

Methods
Participants and PET Data. The data for this study have been previously ana-
lyzed and reported (4). For full details, please refer to this prior publication.
Briefly, 205 cognitively normal individuals (59% women, self-reported sex/
gender) aged 20–82 y were recruited from six different studies performed at
the Washington University School of Medicine. Participants were screened for
neurological, psychiatric, and systemic medical illnesses, and excluded if they
had contraindications to MRI. All participants reported normal cognitive sta-
tus, and nearly all above the age of 60 underwent amyloid imaging (n = 157)
of which 40 were brain amyloid imaging positive. Of the nonamyloid-positive
participants, 19 underwent repeat metabolic brain PET imaging within 1–2 y
(mean 1.6 y). All assessments and imaging procedures were approved by the
Human Research Protection Office and Radioactive Drug Research Committee
at our institution. Written consent was provided from each participant.

PET Imaging. All individuals underwent metabolic brain PET and structural 3T
MRI for registration and regional assessment, as described previously (4).
Briefly, 18F-FDG and 15O-O2, -CO, and -H2O PET scans were performed on all of
the participants while they were in the awake, eyes-closed state. PET images
were coregistered to individual MRI T1 weighed sequences. The registered PET
data were used to derive regional maps of CMRGlc, CMRO2, CBF, and AG after
partial volume correction using the regional spread function approach based
on FreeSurfer-based subcortical gray and white matter segmentation and
Desikan-Killiany Atlas-based cortical regions of interest (35–37). The final data
were normalized to whole brain age-normative data and summarized
according to these regions of interest for each individual session. A subset of
participants also underwent 11C-labeled Pittsburgh compound B brain PET
imaging, which was defined as being “positive” when mean cortical (from
predefined regions of interest) standard uptake value ratios compared with
the cerebellumwas >1.42, a value commensurate with a mean cortical binding
potential of 0.18 and consistent with prior studies from our group (33, 38, 39).

Machine Learning Algorithm. The metabolic PET data were quantile nor-
malized across individuals independently for each metabolic parameter
according to brain regions. Random forest regression was performed using
the randomForest package in R (v3.4.1). Since random forest regression biases
values on either end of the range toward the mean, bias correction was
performed using smooth spline fits (span = 1) on the random forest re-
gression results (15); altering the span value from 0.5 to 1.5 did not affect
the direction of our results. Investigating feature importance for machine
learning algorithms remains an active area of development; we applied the
Boruta package in R to the normalized dataset to identify which of the 316
(79 regions per the Desikan-Killiany Atlas × 4 metabolic parameters) were
most important in maximizing random forest accuracy (35). Similarly, we
performed random forest regression with bias correction using multiple
subsets of the data to determine how specific aspects of the data (regional
or metabolic) influence our results, as described above.

Statistics. All statistics were performed using R (v3.4.1). The differences between
metabolic brain age and actual age is approximately normally distributed across
and within groups, but bootstrap analyses (n = 1,000 random tests in each
analysis) were used to confirm significant findings from t tests to account for
potential nonparametric effects from the machine learning algorithm.

Data and Software Availability. CSV files are provided as Dataset S1, which
contains regional, age-normalized, partial volume corrected values for
CMRGlc, CMRO2, CBF, and AG and additional results required for processing.
An R script that reproduces the results presented here is also provided.

ACKNOWLEDGMENTS. We are continually grateful for our participants’ time
and effort in this and other studies. The data presented here were the result of
several independently funded efforts including grants from the Barnes-Jewish
Hospital Foundation, Charles F. and Joanne Knight, the James S. McDonnell
Foundation, the McDonnell Center for Systems Neuroscience (22-3922-
26239N), and the National Institutes of Health (NS06833, NS057901, P50
AG05681, P01 AG003991, R01 AG053503, R01 AG057536, and UF1AG032438).

1. Kety SS (1956) Human cerebral blood flow and oxygen consumption as related to

aging. J Chronic Dis 3:478–486.
2. Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982) Effects of human aging on patterns

of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose

method. J Cereb Blood Flow Metab 2:163–171.
3. Martin AJ, Friston KJ, Colebatch JG, Frackowiak RS (1991) Decreases in regional ce-

rebral blood flow with normal aging. J Cereb Blood Flow Metab 11:684–689.

4. Goyal MS, et al. (2017) Loss of brain aerobic glycolysis in normal human aging. Cell

Metab 26:353–360.e3.
5. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME (2014) Aerobic glycolysis in

the human brain is associated with development and neotenous gene expression. Cell

Metab 19:49–57.
6. Somel M, et al. (2009) Transcriptional neoteny in the human brain. Proc Natl Acad Sci

USA 106:5743–5748.

4 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1815917116 Goyal et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1815917116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1815917116


www.manaraa.com

7. Somel M, Rohlfs R, Liu X (2014) Transcriptomic insights into human brain evolution:
Acceleration, neutrality, heterochrony. Curr Opin Genet Dev 29:110–119.

8. Petanjek Z, et al. (2011) Extraordinary neoteny of synaptic spines in the human pre-
frontal cortex. Proc Natl Acad Sci USA 108:13281–13286.

9. Fu X, et al. (2011) Rapid metabolic evolution in human prefrontal cortex. Proc Natl
Acad Sci USA 108:6181–6186.

10. Gennatas ED, et al. (2017) Age-related effects and sex differences in gray matter
density, volume, mass, and cortical thickness from childhood to young adulthood.
J Neurosci 37:5065–5073.

11. Satterthwaite TD, et al. (2014) Impact of puberty on the evolution of cerebral per-
fusion during adolescence. Proc Natl Acad Sci USA 111:8643–8648.

12. Berchtold NC, et al. (2008) Gene expression changes in the course of normal brain
aging are sexually dimorphic. Proc Natl Acad Sci USA 105:15605–15610.

13. Yuan Y, Chen YP, Boyd-Kirkup J, Khaitovich P, Somel M (2012) Accelerated aging-
related transcriptome changes in the female prefrontal cortex. Aging Cell 11:
894–901.

14. Skene NG, Roy M, Grant SG (2017) A genomic lifespan program that reorganises the
young adult brain is targeted in schizophrenia. eLife 6:e17915.

15. Zhang GY, Lu Y (2012) Bias-corrected random forests in regression. J Appl Stat 39:
151–160.

16. Jack CR, Jr, et al. (2015) Age, sex, and APOE e4 effects on memory, brain structure, and
β-amyloid across the adult life span. JAMA Neurol 72:511–519.

17. Aanerud J, Borghammer P, Rodell A, Jonsdottir KY, Gjedde A (2016) Sex differences
of human cortical blood flow and energy metabolism. J Cereb Blood Flow Metab 37:
2433–2440.

18. McCarrey AC, An Y, Kitner-Triolo MH, Ferrucci L, Resnick SM (2016) Sex differences in
cognitive trajectories in clinically normal older adults. Psychol Aging 31:166–175.

19. Shannon BJ, et al. (2016) Brain aerobic glycolysis and motor adaptation learning. Proc
Natl Acad Sci USA 113:E3782–E3791.

20. Segarra-Mondejar M, et al. (2018) Synaptic activity-induced glycolysis facilitates
membrane lipid provision and neurite outgrowth. EMBO J, 37:e97368.

21. Kauffman SA (1992) Spin Glasses and Biology (World Scientific, Singapore), pp
61–100.

22. Forrest S (1993) Genetic algorithms: Principles of natural selection applied to com-
putation. Science 261:872–878.

23. Muhlenbein H, Gorgesschleuter M, Kramer O (1988) Evolution algorithms in combi-
natorial optimization. Parallel Comput 7:65–85.

24. Ferretti MT, et al.; Women’s Brain Project and the Alzheimer Precision Medicine Ini-
tiative (2018) Sex differences in Alzheimer disease–The gateway to precision medi-
cine. Nat Rev Neurol 14:457–469.

25. Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate
dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci 10:
1286–1291.

26. McCarthy MM (2008) Estradiol and the developing brain. Physiol Rev 88:91–124.
27. Mosconi L, et al. (2017) Perimenopause and emergence of an Alzheimer’s bio-

energetic phenotype in brain and periphery. PLoS One 12:e0185926.
28. Peterson LR, et al. (2015) Type 2 diabetes, obesity, and sex difference affect the fate

of glucose in the human heart. Am J Physiol Heart Circ Physiol 308:H1510–H1516.
29. Kadkhodayan A, et al. (2017) Sex affects myocardial blood flow and fatty acid sub-

strate metabolism in humans with nonischemic heart failure. J Nucl Cardiol 24:
1226–1235.

30. Nguyen GK, Mellnick VM, Yim AK, Salter A, Ippolito JE (2018) Synergy of sex differ-
ences in visceral fat measured with CT and tumor metabolism helps predict overall
survival in patients with renal cell carcinoma. Radiology 287:884–892.

31. McCarthy MM, Pickett LA, VanRyzin JW, Kight KE (2015) Surprising origins of sex
differences in the brain. Horm Behav 76:3–10.

32. Austad SN, Fischer KE (2016) Sex differences in lifespan. Cell Metab 23:1022–1033.
33. Vlassenko AG, et al. (2018) Aerobic glycolysis and tau deposition in preclinical Alz-

heimer’s disease. Neurobiol Aging 67:95–98.
34. Cole JH, Franke K (2017) Predicting age using neuroimaging: Innovative brain ageing

biomarkers. Trends Neurosci 40:681–690.
35. Desikan RS, et al. (2006) An automated labeling system for subdividing the human

cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:
968–980.

36. Fischl B (2012) FreeSurfer. Neuroimage 62:774–781.
37. Su Y, et al.; Dominantly Inherited Alzheimer Network (2015) Partial volume correction

in quantitative amyloid imaging. Neuroimage 107:55–64.
38. Vlassenko AG, et al. (2016) Imaging and cerebrospinal fluid biomarkers in early

preclinical Alzheimer disease. Ann Neurol 80:379–387.
39. Mintun MA, et al. (2006) [11C]PIB in a nondemented population: Potential anteced-

ent marker of Alzheimer disease. Neurology 67:446–452.

Goyal et al. PNAS Latest Articles | 5 of 5

N
EU

RO
SC

IE
N
CE


